Comment

Legenda

Function has been introduced in Moon# and is not present in Lua 5.2
Implemented completely

Done, with differences Implemented, but has differences from the Lua version (detailed in comments).
Not done, issues Not completed yet.
Unsupported, but implemented as a stub for compatibility.
Unsupported and likely support will be limited or non-existent also in the future
Not even started.

Not done yet

Unity Differences Yielding notes
G . * * *
_VERSION - * * *
Atable, containing several fields including moonsharp version,
_MOONSHARP - * * * platform and emulated lua version.
assert - * * *
collectgarbage - * * * Some arguments ignored
dofile YES * * *
error - * * *
getmetatable - * * *
ipairs YES * * *
load NO * * * A function as input cannot yield.
Same as loadfile, but with better handling of default _ENV for
loadsafe NO * * * sandboxing.
loadfile - * * * stdin as input is not supported.
Same as loadfile, but with better handling of default _ENV for
loadfilesafe - * * * sandboxing.
next - * * *
pairs YES * * *
pcall YES * * *
print NO * * * __tostring cannot yield when called from print
rawequal - * * *
rawget - * * *
rawlen - * * *
rawset - * * *
require YES * * * Minor internal differences
select - * * *
setmetatable - * * *




tonumber

Only bases between 2 and 10, and base 16 are supported.

tostring

YES

type

xpcall

NO

Double faults are appended to error and ignored.

Code can yield, but the error message handler
cannot.

bit32.arshift

bit32.band

bit32.bnot

bit32.bor

bit32.btest

bit32.bxor

bit32.extract

bit32.Irotate

bit32.Ishift

bit32.replace

bit32.rrotate

bit32.rshift

coroutine.create

coroutine.resume

coroutine.running

coroutine.status

coroutine.wrap

coroutine.yield

debug.debug

debug.getuservalue

debug.getmetatable

Use the debugger infrastructure.

Function is heavily dependent on implementation details.

Function is heavily dependent on implementation details.

debug.getregistry

debug.getupvalue

debug.setuservalue

debug.setmetatable

Use the debugger infrastructure.

Function is heavily dependent on implementation details.

Cannot set on userdata as now.




debug.setupvalue *
debug.traceback *
Works ok, but returns a number instead of userdata (still, can be
debug.upvalueid * used in pretty much the same way).
debug.upvaluejoin
Evaluates the code passed as a parameter dynamically. All
dynamic.eval * accesses are raw,function calls will raise an error.
dynamic.prepare * Prepares an expression for faster evaluation with dynamic.eval.
file:close NO
file:flush NO
file:lines NO
file:read NO
file:seek NO
file:setvbuf NO
file:write NO
io.close NO
io.flush NO
io.input NO
io.lines NO
io.open NO
io.output NO
_ Interprocess comms, stdin and stdout are NOT supported. This
NO however is ok by the Lua standard.
io.read NO
io.stderr NO
io.stdin NO
io.stdout NO
io.tmpfile NO
io.type NO
io.write NO
math.abs *
math.acos *
math.asin *
math.atan *
math.atan2 *




math.ceil

math.cos

math.cosh

math.deg

math.exp

math.floor

math.fmod

math.frexp

math.huge

math.ldexp

math.log

math.max

math.min

math.modf

math.pi

math.pow

math.rad

math.random

Minor differences in accepted inputs (MoonSharp is more
tolerant)

math.randomseed

math.sin

math.sinh

math.sqrt

math.tan

math.tanh

os.clock

os.date

Running on Mono systems might lead to erroneous output due to
a Mono bug (11817)

os.difftime

os.execute

NO

os.exit

NO

os.getenv

NO

os.remove

NO

os.rename

NO

NO

Unsupported, currently a stub

os.time

os.tmpname

NO




package.config

package.loaded

See "Loaders” in MoonSharp guide to see how to customize
loading of scripts and packages

See "Loaders™ in MoonSharp guide to see how to customize
loading of scripts and packages

See "Loaders" in MoonSharp guide to see how to customize
loading of scripts and packages

See "Loaders" in MoonSharp guide to see how to customize
loading of scripts and packages

See "Loaders” in MoonSharp guide to see how to customize
loading of scripts and packages

See "Loaders" in MoonSharp guide to see how to customize
loading of scripts and packages

Character codes are cropped to 0-255. Use string.unicode to

string.byte have the unicode code-point.
string.char Values > 255 are silently supported (as unicode codepoints)
Functions with upvalues raise an error as Lua 5.0 did and as Lua
string.dump 5.2 should do according to documentation.
Implementation taken from KopiLua. Patterns cannot contain \0.
string.find Use %z instead.

string.format NO Implementation taken from KopiLua. __tostring metamethod cannot yield.
Implementation taken from KopiLua. Patterns cannot contain \0.
string.gmatch Use %z instead.
Implementation taken from KopiLua. Patterns cannot contain \0.
string.gsub NO Use %z instead. Callback function (if used) cannot yield.
string.len
string.lower
Implementation taken from KopiLua. Patterns cannot contain \0.
string.match Use %z instead.
string.rep
string.reverse
string.sub
Works just as "string.byte" would do, but returns the unicode
string.unicode code-point without truncation.
string.upper
table.concat NO __len cannot yield
table.insert NO __len cannot yield

table.pack




table.remove

NO

__len cannot yield

table.sort

NO

__lt, __len and the comparison function cannot yield

table.unpack




